Aravind Putrevu
Devrel
ENTDECKEN, VERBINDEN, WACHSEN
Sind Sie bereit für den Einstieg in die KI? Microsoft Reactor bietet Veranstaltungen, Schulungen und Communityressourcen, um Startups, Unternehmer und Entwickler beim Aufbau ihres nächsten Geschäfts mit KI-Technologie zu unterstützen. Seien Sie dabei!
ENTDECKEN, VERBINDEN, WACHSEN
Sind Sie bereit für den Einstieg in die KI? Microsoft Reactor bietet Veranstaltungen, Schulungen und Communityressourcen, um Startups, Unternehmer und Entwickler beim Aufbau ihres nächsten Geschäfts mit KI-Technologie zu unterstützen. Seien Sie dabei!
26 Februar, 2024 | 12:00 PM - 1:00 PM (UTC) Koordinierte Weltzeit (UTC)
Thema: Data Science und maschinelles Lernen
Sprache: Englisch
Labeled data powers AI/ML in the enterprise, but real-world datasets have been found to contain between 7-50% annotation errors. Imperfectly labelled text data hampers ML models' training (and evaluation) across tasks like intent recognition, entity recognition, and sequence generation. Although pretrained LLMs are equipped with a lot of world knowledge, their performance is adversely affected by noisy training data (as noted by OpenAI).
In this talk, we illustrate data-centric techniques to mitigate the effect of label noise without changing any code related to model architecture, hyperparameters, or training. These data quality improvement techniques should thus remain applicable even for future advanced LLMs like GPT-10.
Referenten
Bei Fragen können Sie uns wie folgt kontaktieren: reactor@microsoft.com