メイン コンテンツにスキップ

このページの一部は機械またはAIによって翻訳される場合があります。

Wallaroo.AI: Techniques for Faster, Easier AI

Microsoft Reactor に参加し、スタートアップ企業や開発者とライブで関わる

AI を始める準備はできていますか?  Microsoft Reactor は、スタートアップ企業、起業家、開発者が AI テクノロジの上に次のビジネスを構築するのに役立つイベント、トレーニング、コミュニティ リソースを提供します。 ご参加ください。

Wallaroo.AI: Techniques for Faster, Easier AI

Microsoft Reactor に参加し、スタートアップ企業や開発者とライブで関わる

AI を始める準備はできていますか?  Microsoft Reactor は、スタートアップ企業、起業家、開発者が AI テクノロジの上に次のビジネスを構築するのに役立つイベント、トレーニング、コミュニティ リソースを提供します。 ご参加ください。

戻る

Wallaroo.AI: Techniques for Faster, Easier AI

  • 形式:
  • alt##Livestreamライブストリーム

トピック: AI のインフラストラクチャ, AI, データ サイエンスと機械学習

言語: 英語

  • このシリーズのイベント:
  • 7

Techniques for Faster, Easier AI: Model Observability and Workload Orchestration

This series uses a uses a cashierless checkout scenario to illustrate how to overcome challenges in monitoring CV AI models deployed at the edge and deploying and automating multi-cloud workloads

Ideal for ML Engineers, Data Scientists, or AI developers, these sessions will help you build the skills and understand the processes needed to easily deploy, scale, and manage AI workloads across emergent AI use cases.

The sessions will show:

● Model Observability and Optimization - We will examine how to easily deploy, and monitor for drift and accuracy and take action on models running on remote edge devices such as in store cameras and checkouts.

● Workload Orchestration - We will build on the retail industry example to support accurate demand forecasting across in-store products to help inform product inventory supplies and distribution. We will demonstrate how to use orchestration capabilities to drive automation of AI workloads that involve ingestion and running of large batches of multimodal datasets for forecast generation.

Hands On:

Practice the techniques shown in the sessions by downloading the Wallaroo.AI Inference Server Free Edition from the Azure Marketplace (https://aka.ms/Wallaroo.AI-Free)

講演者

このシリーズの過去のイベント

常時 - 協定世界時

1月

09

火曜日

2024

ML Model Insights and Observability at the Edge

9:00 午後 - 10:00 午後 (UTC)

Learn how to get instant data insights and drift detection alerts from pipelines deployed at edge locations without any operational overhead. See how you to create aggregated drift detection assays on inputs and outputs for the pipelines deployed in an ML operations center & all the edge deployments Why should I attend? You will leave this session with a comprehensive understanding about how to observe ML models deployed at the edge for data drift and take corrective action for under performing models. Try this Computer Vision model and other common AI use cases using the Wallaroo.AI Azure Inference Server Freemium Offer on Azure Marketplace (https://portal.azure.com) and also try the Free Wallaroo.AI Community Edition (https://portal.wallaroo.community/)

  • 形式:
  • alt##Livestreamライブストリーム

トピック: AI のインフラストラクチャ

言語: 英語

オンデマンドで見る

1月

23

火曜日

2024

ML Workflow Automation

9:00 午後 - 10:00 午後 (UTC)

About this session: Learn how to automate and scale ML workflows with workload orchestration for both batch and real-time inference serving. In this session we will dive into the steps to deploy, automate and scale recurring production ML workloads that can ingest data from predefined data sources to run inferences, chain pipelines, and send inference results to predefined destinations to analyze model insights and assess business outcomes. Why should I attend? You will leave this session with a comprehensive understanding about how to manage and orchestrate model automation for batch and real-time inference serving scenarios Resources: Try this Computer Vision model and other common AI use cases using the Wallaroo.AI Azure Inference Server Freemium Offer on Azure Marketplace (https://portal.azure.com) and also try the Free Wallaroo.AI Community Edition (https://portal.wallaroo.community/)

  • 形式:
  • alt##Livestreamライブストリーム

トピック: AI のインフラストラクチャ

言語: 英語

オンデマンドで見る

2月

28

水曜日

2024

Getting Your AI Models To The Production Start Line

6:00 午後 - 7:00 午後 (UTC)

Getting AI models into production is hard. To begin with there are many different model building frameworks on the market to choose from and each comes with a unique way to package them for production adding to the complexity for getting to the production start line. In this session we will cover getting the model framework of your choice to production in a standardized way as well as using ML model registry for version control as the models move between training, production, monitoring, and deployment.

  • 形式:
  • alt##Livestreamライブストリーム

トピック: AI

言語: 英語

オンデマンドで見る

5月

16

木曜日

2024

Beyond Edge AI Deployment: Manage, Observe, Update

4:00 午後 - 5:00 午後 (UTC)

Congratulations! You have deployed your AI models to the Edge. How do you make sure they are performing the way they were intended to? If they are not, what can you do about it? In this session we will deep dive into capturing observability data on Edge deployments even when the network connection is intermittent or has limited bandwidth and have the ability to return the data during specific time periods to run observability on this data. We will show how Data scientists in the Model Operations Center can monitor drift for models deployed for a specific edge location or a group of edge locations and take action on underperforming models by hot swapping in better performing models. Try this Computer Vision model and other common AI use cases using the Wallaroo.AI Azure Inference Server Freemium Offer on Azure Marketplace (https://aka.ms/Wallaroo-Inference) and also try the Free Wallaroo.AI Community Edition (https://aka.ms/Wallaroo.AI-Free)

  • 形式:
  • alt##Livestreamライブストリーム

トピック: データ サイエンスと機械学習

言語: 英語

オンデマンドで見る

7月

16

火曜日

2024

Deploying and Monitoring LLM Inference Endpoints

6:00 午後 - 7:00 午後 (UTC)

In this session we will dive into deploying LLMs to Production Inference Endpoints and then putting in place automated monitoring metrics and alerts to help track model performance and suppress potential output issues such as toxicity. We will also cover the process of optimizing LLMs using RAG, for relevant, accurate, and useful outputs. You will leave this session with a comprehensive understanding about deploying LLMs to production and monitoring the models for issues such as Toxicity, relevance, and accuracy. Try this other common AI use cases using the Wallaroo.AI Azure Inference Server Freemium Offer on Azure Marketplace and also try the Free Wallaroo.AI Community Edition

  • 形式:
  • alt##Livestreamライブストリーム

トピック: データ サイエンスと機械学習

言語: 英語

オンデマンドで見る

10月

31

木曜日

2024

Building Custom LLMs for Production Inference Endpoints - Wallaroo.ai

6:00 午後 - 7:00 午後 (UTC)

In this session we will dive into the details for how to build, deploy, and optimize custom Large Language Models (LLMs) for production inference environments This session will cover the key steps for Custom LLMs (LLama), focusing on: Why custom LLM's? Inference Performance Optimization Harmful language Detection

  • 形式:
  • alt##Livestreamライブストリーム

トピック: データ サイエンスと機械学習

言語: 英語

オンデマンドで見る

このシリーズの過去のイベント

常時 - 協定世界時

1月

09

火曜日

2024

ML Model Insights and Observability at the Edge

9:00 午後 - 10:00 午後 (UTC)

Learn how to get instant data insights and drift detection alerts from pipelines deployed at edge locations without any operational overhead. See how you to create aggregated drift detection assays on inputs and outputs for the pipelines deployed in an ML operations center & all the edge deployments Why should I attend? You will leave this session with a comprehensive understanding about how to observe ML models deployed at the edge for data drift and take corrective action for under performing models. Try this Computer Vision model and other common AI use cases using the Wallaroo.AI Azure Inference Server Freemium Offer on Azure Marketplace (https://portal.azure.com) and also try the Free Wallaroo.AI Community Edition (https://portal.wallaroo.community/)

  • 形式:
  • alt##Livestreamライブストリーム

トピック: AI のインフラストラクチャ

言語: 英語

オンデマンドで見る

1月

23

火曜日

2024

ML Workflow Automation

9:00 午後 - 10:00 午後 (UTC)

About this session: Learn how to automate and scale ML workflows with workload orchestration for both batch and real-time inference serving. In this session we will dive into the steps to deploy, automate and scale recurring production ML workloads that can ingest data from predefined data sources to run inferences, chain pipelines, and send inference results to predefined destinations to analyze model insights and assess business outcomes. Why should I attend? You will leave this session with a comprehensive understanding about how to manage and orchestrate model automation for batch and real-time inference serving scenarios Resources: Try this Computer Vision model and other common AI use cases using the Wallaroo.AI Azure Inference Server Freemium Offer on Azure Marketplace (https://portal.azure.com) and also try the Free Wallaroo.AI Community Edition (https://portal.wallaroo.community/)

  • 形式:
  • alt##Livestreamライブストリーム

トピック: AI のインフラストラクチャ

言語: 英語

オンデマンドで見る

2月

28

水曜日

2024

Getting Your AI Models To The Production Start Line

6:00 午後 - 7:00 午後 (UTC)

Getting AI models into production is hard. To begin with there are many different model building frameworks on the market to choose from and each comes with a unique way to package them for production adding to the complexity for getting to the production start line. In this session we will cover getting the model framework of your choice to production in a standardized way as well as using ML model registry for version control as the models move between training, production, monitoring, and deployment.

  • 形式:
  • alt##Livestreamライブストリーム

トピック: AI

言語: 英語

オンデマンドで見る

5月

16

木曜日

2024

Beyond Edge AI Deployment: Manage, Observe, Update

4:00 午後 - 5:00 午後 (UTC)

Congratulations! You have deployed your AI models to the Edge. How do you make sure they are performing the way they were intended to? If they are not, what can you do about it? In this session we will deep dive into capturing observability data on Edge deployments even when the network connection is intermittent or has limited bandwidth and have the ability to return the data during specific time periods to run observability on this data. We will show how Data scientists in the Model Operations Center can monitor drift for models deployed for a specific edge location or a group of edge locations and take action on underperforming models by hot swapping in better performing models. Try this Computer Vision model and other common AI use cases using the Wallaroo.AI Azure Inference Server Freemium Offer on Azure Marketplace (https://aka.ms/Wallaroo-Inference) and also try the Free Wallaroo.AI Community Edition (https://aka.ms/Wallaroo.AI-Free)

  • 形式:
  • alt##Livestreamライブストリーム

トピック: データ サイエンスと機械学習

言語: 英語

オンデマンドで見る

7月

16

火曜日

2024

Deploying and Monitoring LLM Inference Endpoints

6:00 午後 - 7:00 午後 (UTC)

In this session we will dive into deploying LLMs to Production Inference Endpoints and then putting in place automated monitoring metrics and alerts to help track model performance and suppress potential output issues such as toxicity. We will also cover the process of optimizing LLMs using RAG, for relevant, accurate, and useful outputs. You will leave this session with a comprehensive understanding about deploying LLMs to production and monitoring the models for issues such as Toxicity, relevance, and accuracy. Try this other common AI use cases using the Wallaroo.AI Azure Inference Server Freemium Offer on Azure Marketplace and also try the Free Wallaroo.AI Community Edition

  • 形式:
  • alt##Livestreamライブストリーム

トピック: データ サイエンスと機械学習

言語: 英語

オンデマンドで見る

10月

31

木曜日

2024

Building Custom LLMs for Production Inference Endpoints - Wallaroo.ai

6:00 午後 - 7:00 午後 (UTC)

In this session we will dive into the details for how to build, deploy, and optimize custom Large Language Models (LLMs) for production inference environments This session will cover the key steps for Custom LLMs (LLama), focusing on: Why custom LLM's? Inference Performance Optimization Harmful language Detection

  • 形式:
  • alt##Livestreamライブストリーム

トピック: データ サイエンスと機械学習

言語: 英語

オンデマンドで見る

ご不明な点がございましたら、お問い合わせください reactor@microsoft.com