콘텐츠 기본 건너뛰기

검색, 연결, 성장

Microsoft Reactor

Microsoft Reactor에 가입하고 스타트업 및 개발자와 실시간 소통

AI를 시작할 준비가 되셨나요? Microsoft Reactor는 스타트업, 기업가 및 개발자가 AI 기술에 대한 다음 비즈니스를 구축할 수 있도록 이벤트, 교육 및 커뮤니티 리소스를 제공합니다. 참여해 주세요!

검색, 연결, 성장

Microsoft Reactor

Microsoft Reactor에 가입하고 스타트업 및 개발자와 실시간 소통

AI를 시작할 준비가 되셨나요? Microsoft Reactor는 스타트업, 기업가 및 개발자가 AI 기술에 대한 다음 비즈니스를 구축할 수 있도록 이벤트, 교육 및 커뮤니티 리소스를 제공합니다. 참여해 주세요!

돌아가기

Metrics Stores vs Feature Stores

14 12월, 2021 | 7:00 오전 - 8:00 오전 (UTC) 협정 세계시

  • 형식:
  • alt##LivestreamLivestream

항목: 데이터 과학 및 Machine Learning

언어: 영어

In this session, we'll go over what Metric Stores and Feature Stores are, their differences and similarities, why data professionals should learn more about them, and some of their use cases in industry. By the end of the session, you will have a better understanding of how both metric and feature stores might be able to help you and your organisation and, also, how to consume and keep track of the most important KPIs and features that power your data-driven products.

Motivation: With the rise of data-driven applications comes the rise of metrics (churn rate, daily active users, left or right swipes, ads revenue, etc.) and KPIs to keep track of, which makes the process of standardising their definitions across an organisation a potentially complicated task (e.g. different definitions of revenue and active users across divisions of your company). In other words, if the scale of data gave rise to data lakes, the scale of metrics to keep track of have given rise to the Metrics Store. On the other hand, if the rise of data and machine learning-backed applications, especially those operating in complex systems with hundreds if not thousands of features, have highlighted the challenge of keeping track of diverse feature engineering efforts, and this problem has given rise to the Feature Store. As both of these stores solve problems of similar nature but with subtle and yet pronounce differences, let's unpack both of these stores together in this session.Content Level - All levelsWho is it aimed at?
Data professionals at all levels.

Your Speaker
Ramon Perez - Senior Product Developer at Decoded and Developer Advocate at Transform
Ramon works as a senior product developer at Decoded in the APAC region, and also collaborates with Transform as a developer advocate. He was previously a data scientist and educator at Coder Academy in Sydney and before that, he taught statistical programming at London Business School and worked as a research associate at INSEAD. He spends most of his time developing educational data science content for work and for fun, teaching, drinking coffee, mountain biking, speaking at conferences, and exploring many of the outdoor wonders Australia has to offer.

스피커

질문이 있는 경우 다음으로 문의하세요. reactor@microsoft.com