주요 콘텐츠로 건너뛰기

LEARN, CONNECT, BUILD

Microsoft Reactor

Microsoft Reactor에 가입하고 개발자와 라이브 참여

AI 및 최신 기술을 시작할 준비가 되셨나요? Microsoft Reactor는 개발자, 기업가 및 신생 기업이 AI 기술 등을 기반으로 구축하는 데 도움이 되는 이벤트, 교육 및 커뮤니티 리소스를 제공합니다. 참여하세요.

LEARN, CONNECT, BUILD

Microsoft Reactor

Microsoft Reactor에 가입하고 개발자와 라이브 참여

AI 및 최신 기술을 시작할 준비가 되셨나요? Microsoft Reactor는 개발자, 기업가 및 신생 기업이 AI 기술 등을 기반으로 구축하는 데 도움이 되는 이벤트, 교육 및 커뮤니티 리소스를 제공합니다. 참여하세요.

돌아가기

Explainable AI (XAI) Course: Introduction to XAI

5 3월, 2023 | 4:00 오후 - 7:00 오후 (UTC) 협정 세계시

위치: Tel Aviv

주소: Derech Menachem Begin 144, Tel Aviv-Yafo 'Midtown' Floor 50

  • 서식:
  • alt##In person직접 생성 및 전송하는 경우 (Tel Aviv)

항목: 데이터 과학 및 Machine Learning

언어: 히브리어

The XAI course provides a comprehensive overview of explainable AI, covering both theory and practice, and exploring various use cases for explainability. Participants will learn not only how to generate explanations, but also how to evaluate and effectively communicate these explanations to diverse stakeholders.

The XAI course is managed on a voluntary basis by DataNights and Microsoft organizers and free for charge for the participant. This course is designed for data scientists that have at least two years in industry of hands-on experience with machine learning and Python and a basic background in deep learning. Some of the sessions will be held in-person at the Microsoft Reactor in Tel Aviv, while others will be conducted virtually.

Course Leaders:
Bitya Neuhof, DataNights
Yasmin Bokobza, Microsoft

What is this session about?
In this introduction lecture on explainability in AI, we will delve into the key topics that surround this emerging field. We will first provide an overview of the motivation for explainability, exploring how it helps us to achieve more transparent and trustworthy AI systems, particularly from a managerial perspective. We will then define some of the key terminology in the field and differentiate between black box explanation and interpretable ML. We will discuss the differences between global and local explanations, and include many examples from different fields and use cases throughout the lecture.

Next, we will examine the "built-in" feature importance methods that are commonly used for regression and trees, and discuss the strengths and limitations of these methods.
Overall, this lecture will provide a comprehensive introduction to explainability in AI, covering the key topics and terminology that are essential for understanding this field.

스피커

이 페이지의 일부는 기계 또는 AI 번역될 수 있습니다.