Przejdź do głównej zawartości

LEARN, CONNECT, BUILD

Microsoft Reactor

Dołącz do usługi Microsoft Reactor i skontaktuj się z deweloperami na żywo

Chcesz rozpocząć pracę ze sztuczną inteligencją i najnowszymi technologiami? Usługa Microsoft Reactor udostępnia zdarzenia, szkolenia i zasoby społeczności, które ułatwiają deweloperom, przedsiębiorcom i startupom tworzenie technologii sztucznej inteligencji i nie tylko. Dołącz do nas!

LEARN, CONNECT, BUILD

Microsoft Reactor

Dołącz do usługi Microsoft Reactor i skontaktuj się z deweloperami na żywo

Chcesz rozpocząć pracę ze sztuczną inteligencją i najnowszymi technologiami? Usługa Microsoft Reactor udostępnia zdarzenia, szkolenia i zasoby społeczności, które ułatwiają deweloperom, przedsiębiorcom i startupom tworzenie technologii sztucznej inteligencji i nie tylko. Dołącz do nas!

Wstecz

Improving Large Language Model by Systematically Improving its Data

26 lutego, 2024 | 12:00 PM - 1:00 PM (UTC) Uniwersalny czas koordynowany

  • Formatuj:
  • alt##LivestreamTransmisja strumieniowa na żywo

Temat: Nauka o danych i uczenie maszynowe

Język: angielski

Labeled data powers AI/ML in the enterprise, but real-world datasets have been found to contain between 7-50% annotation errors. Imperfectly labelled text data hampers ML models' training (and evaluation) across tasks like intent recognition, entity recognition, and sequence generation. Although pretrained LLMs are equipped with a lot of world knowledge, their performance is adversely affected by noisy training data (as noted by OpenAI).

In this talk, we illustrate data-centric techniques to mitigate the effect of label noise without changing any code related to model architecture, hyperparameters, or training. These data quality improvement techniques should thus remain applicable even for future advanced LLMs like GPT-10.

Prelegenci

Zdarzenia pokrewne

Poniższe wydarzenia mogą Cię również zainteresować. Pamiętaj, aby odwiedzić nasz Strona główna reaktora aby wyświetlić wszystkie dostępne zdarzenia.

Części tej strony mogą być tłumaczone maszynowo lub przez AI.