Maya Bercovitch
Anaplan
KEŞFETME, BAĞLANMA, BÜYÜTME
Yapay zekayı kullanmaya başlamaya hazır mısınız? Microsoft Reactor, startup''ların, girişimcilerin ve geliştiricilerin bir sonraki işlerini yapay zeka teknolojisi üzerine kurmalarına yardımcı olmak için etkinlikler, eğitimler ve topluluk kaynakları sağlar. Bize katılın!
KEŞFETME, BAĞLANMA, BÜYÜTME
Yapay zekayı kullanmaya başlamaya hazır mısınız? Microsoft Reactor, startup''ların, girişimcilerin ve geliştiricilerin bir sonraki işlerini yapay zeka teknolojisi üzerine kurmalarına yardımcı olmak için etkinlikler, eğitimler ve topluluk kaynakları sağlar. Bize katılın!
5 Mart, 2023 | 4:00 ÖS - 7:00 ÖS (UTC) Eşgüdümlü Evrensel Saat
Konum: Tel Aviv
Adres: Derech Menachem Begin 144, Tel Aviv-Yafo 'Midtown' Floor 50
Konu: Veri Bilimi & Machine Learning
Dil: İbranice
The XAI course provides a comprehensive overview of explainable AI, covering both theory and practice, and exploring various use cases for explainability. Participants will learn not only how to generate explanations, but also how to evaluate and effectively communicate these explanations to diverse stakeholders.
The XAI course is managed on a voluntary basis by DataNights and Microsoft organizers and free for charge for the participant. This course is designed for data scientists that have at least two years in industry of hands-on experience with machine learning and Python and a basic background in deep learning. Some of the sessions will be held in-person at the Microsoft Reactor in Tel Aviv, while others will be conducted virtually.
Course Leaders:
Bitya Neuhof, DataNights
Yasmin Bokobza, Microsoft
What is this session about?
In this introduction lecture on explainability in AI, we will delve into the key topics that surround this emerging field. We will first provide an overview of the motivation for explainability, exploring how it helps us to achieve more transparent and trustworthy AI systems, particularly from a managerial perspective. We will then define some of the key terminology in the field and differentiate between black box explanation and interpretable ML. We will discuss the differences between global and local explanations, and include many examples from different fields and use cases throughout the lecture.
Next, we will examine the "built-in" feature importance methods that are commonly used for regression and trees, and discuss the strengths and limitations of these methods.
Overall, this lecture will provide a comprehensive introduction to explainability in AI, covering the key topics and terminology that are essential for understanding this field.
Hoparlör
Bu olay, Explainable AI (XAI) course Series.
Buraya tıklayarak Seriler Sayfasını ziyaret edin burada yaklaşan ve isteğe bağlı tüm olayları görebilirsiniz.
Sorularınız için lütfen adresinden bizimle iletişime geçin reactor@microsoft.com