Chuyển đến nội dung chính

HỌC HỎI, KẾT NỐI, XÂY DỰNG

Microsoft Reactor

Tham gia Microsoft Reactor và tương tác trực tiếp với các nhà phát triển

Bạn đã sẵn sàng bắt đầu với AI và các công nghệ mới nhất chưa? Microsoft Reactor cung cấp các sự kiện, đào tạo và tài nguyên cộng đồng để giúp các nhà phát triển, doanh nhân và công ty khởi nghiệp xây dựng dựa trên công nghệ AI và hơn thế nữa. Tham gia với chúng tôi!

HỌC HỎI, KẾT NỐI, XÂY DỰNG

Microsoft Reactor

Tham gia Microsoft Reactor và tương tác trực tiếp với các nhà phát triển

Bạn đã sẵn sàng bắt đầu với AI và các công nghệ mới nhất chưa? Microsoft Reactor cung cấp các sự kiện, đào tạo và tài nguyên cộng đồng để giúp các nhà phát triển, doanh nhân và công ty khởi nghiệp xây dựng dựa trên công nghệ AI và hơn thế nữa. Tham gia với chúng tôi!

Quay lại

Explainable AI (XAI) Course: Local Explanations - Concept and Methods

13 tháng 3, 2023 | 5:00 CH - 6:30 CH (UTC) Giờ phối hợp quốc tế

  • Định dạng:
  • alt##LivestreamPhát trực tiếp

Chủ đề: Khoa học dữ liệu và học máy

Ngôn ngữ: Tiếng Do Thái

The XAI course provides a comprehensive overview of explainable AI, covering both theory and practice, and exploring various use cases for explainability. Participants will learn not only how to generate explanations, but also how to evaluate and effectively communicate these explanations to diverse stakeholders.

The XAI course is managed on a voluntary basis by DataNights and Microsoft organizers and free for charge for the participant. This course is designed for data scientists that have at least two years in industry of hands-on experience with machine learning and Python and a basic background in deep learning. Some of the sessions will be held in-person at the Microsoft Reactor in Tel Aviv, while others will be conducted virtually.

Course Leaders:
Bitya Neuhof, DataNights
Yasmin Bokobza, Microsoft

What is this session about?
Machine learning models can be analyzed at a high level using global explanations, such as linear model coefficients. However, there are several limitations to these global explanations. In this talk, I will review the use cases where local explanations are needed and introduce two popular methods for generating local explanations: LIME and SHAP. Our learning will be focused on SHAP, its theory, model-agnostic and model-specific versions, and how to use and read SHAP visualizations.

Người phát biểu

Các phần của trang này có thể được dịch bằng máy hoặc AI.