Chuyển đến nội dung chính

HỌC HỎI, KẾT NỐI, XÂY DỰNG

Microsoft Reactor

Tham gia Microsoft Reactor và tương tác trực tiếp với các nhà phát triển

Bạn đã sẵn sàng bắt đầu với AI và các công nghệ mới nhất chưa? Microsoft Reactor cung cấp các sự kiện, đào tạo và tài nguyên cộng đồng để giúp các nhà phát triển, doanh nhân và công ty khởi nghiệp xây dựng dựa trên công nghệ AI và hơn thế nữa. Tham gia với chúng tôi!

HỌC HỎI, KẾT NỐI, XÂY DỰNG

Microsoft Reactor

Tham gia Microsoft Reactor và tương tác trực tiếp với các nhà phát triển

Bạn đã sẵn sàng bắt đầu với AI và các công nghệ mới nhất chưa? Microsoft Reactor cung cấp các sự kiện, đào tạo và tài nguyên cộng đồng để giúp các nhà phát triển, doanh nhân và công ty khởi nghiệp xây dựng dựa trên công nghệ AI và hơn thế nữa. Tham gia với chúng tôi!

Quay lại

How to expose ML model errors, data bias & interpretability with responsible AI

13 tháng 7, 2023 | 4:30 CH - 5:30 CH (UTC) Giờ phối hợp quốc tế

  • Định dạng:
  • alt##LivestreamPhát trực tiếp

Chủ đề: Khoa học dữ liệu và học máy

Ngôn ngữ: Tiếng Anh

The astonishing growth in AI innovations are transforming our lives and society. Companies are adopting AI in their business process and products to gain a competitive advancement. The rapid advancements are seen across many industries such as finance, healthcare, education, manufacturing, etc. As society expectation for AI are evolving, there's increasing scrutiny on what harms AI systems can cause with no transparency or accountability enforced. As a result, there’s growing government compliance regulations on AI in some industries. On the other hand, data scientists, AI developers and decision-makers face the challenge of finding the right tools to enable them to analyze machine learning models for fairness, safety & reliability, explainability and accountability. In this session, we will explore the Azure Machine Learning's Responsible AI dashboard tool that enables data scientists and companies to analyze and debug AI systems to be less harmful to society, more trustworthy and meet compliance requirements.

  • AI
  • Machine Learning

Người phát biểu

Sự kiện liên quan

Các sự kiện dưới đây cũng có thể được bạn quan tâm. Hãy chắc chắn ghé thăm Trang chủ lò phản ứng để xem tất cả các sự kiện có sẵn.

Các phần của trang này có thể được dịch bằng máy hoặc AI.