Chuyển đến nội dung chính

HỌC HỎI, KẾT NỐI, XÂY DỰNG

Microsoft Reactor

Tham gia Microsoft Reactor và tương tác trực tiếp với các nhà phát triển

Bạn đã sẵn sàng bắt đầu với AI và các công nghệ mới nhất chưa? Microsoft Reactor cung cấp các sự kiện, đào tạo và tài nguyên cộng đồng để giúp các nhà phát triển, doanh nhân và công ty khởi nghiệp xây dựng dựa trên công nghệ AI và hơn thế nữa. Tham gia với chúng tôi!

HỌC HỎI, KẾT NỐI, XÂY DỰNG

Microsoft Reactor

Tham gia Microsoft Reactor và tương tác trực tiếp với các nhà phát triển

Bạn đã sẵn sàng bắt đầu với AI và các công nghệ mới nhất chưa? Microsoft Reactor cung cấp các sự kiện, đào tạo và tài nguyên cộng đồng để giúp các nhà phát triển, doanh nhân và công ty khởi nghiệp xây dựng dựa trên công nghệ AI và hơn thế nữa. Tham gia với chúng tôi!

Quay lại

Improving Large Language Model by Systematically Improving its Data

26 tháng 2, 2024 | 12:00 CH - 1:00 CH (UTC) Giờ phối hợp quốc tế

  • Định dạng:
  • alt##LivestreamPhát trực tiếp

Chủ đề: Khoa học dữ liệu và học máy

Ngôn ngữ: Tiếng Anh

Labeled data powers AI/ML in the enterprise, but real-world datasets have been found to contain between 7-50% annotation errors. Imperfectly labelled text data hampers ML models' training (and evaluation) across tasks like intent recognition, entity recognition, and sequence generation. Although pretrained LLMs are equipped with a lot of world knowledge, their performance is adversely affected by noisy training data (as noted by OpenAI).

In this talk, we illustrate data-centric techniques to mitigate the effect of label noise without changing any code related to model architecture, hyperparameters, or training. These data quality improvement techniques should thus remain applicable even for future advanced LLMs like GPT-10.

Người phát biểu

Sự kiện liên quan

Các sự kiện dưới đây cũng có thể được bạn quan tâm. Hãy chắc chắn ghé thăm Trang chủ lò phản ứng để xem tất cả các sự kiện có sẵn.

Các phần của trang này có thể được dịch bằng máy hoặc AI.