Chuyển đến nội dung chính

HỌC HỎI, KẾT NỐI, XÂY DỰNG

Microsoft Reactor

Tham gia Microsoft Reactor và tương tác trực tiếp với các nhà phát triển

Bạn đã sẵn sàng bắt đầu với AI và các công nghệ mới nhất chưa? Microsoft Reactor cung cấp các sự kiện, đào tạo và tài nguyên cộng đồng để giúp các nhà phát triển, doanh nhân và công ty khởi nghiệp xây dựng dựa trên công nghệ AI và hơn thế nữa. Tham gia với chúng tôi!

HỌC HỎI, KẾT NỐI, XÂY DỰNG

Microsoft Reactor

Tham gia Microsoft Reactor và tương tác trực tiếp với các nhà phát triển

Bạn đã sẵn sàng bắt đầu với AI và các công nghệ mới nhất chưa? Microsoft Reactor cung cấp các sự kiện, đào tạo và tài nguyên cộng đồng để giúp các nhà phát triển, doanh nhân và công ty khởi nghiệp xây dựng dựa trên công nghệ AI và hơn thế nữa. Tham gia với chúng tôi!

Quay lại

Mastering Semantic Classification with Embeddings and Vector Similarity in .NET/C#

3 tháng 4, 2025 | 3:00 CH - 3:45 CH (UTC) Giờ phối hợp quốc tế

  • Định dạng:
  • alt##LivestreamPhát trực tiếp

Chủ đề: Agents

Ngôn ngữ: Tiếng Anh

GenAI Agents often hallucinate, generating misleading responses when they lack accurate grounding. The solution? Embedding-Based Classification with Vector Similarity - ensuring agents first classify queries correctly before retrieving trusted data.

Join this live session to learn how embedding models like Text-Embedding-Ada-002 leverage Semantic Similarity and Cosine Similarity to improve AI precision, reduce errors, and scale effortlessly in .NET/C# applications.

Why This Matters

  • Without proper classification, GenAI Agents can hallucinate, pulling in irrelevant or incorrect data and making unreliable predictions.
  • Vector-Based Embeddings solve this by capturing the Semantic Meaning of queries and mapping them to the right categories.
  • Ensures agents retrieve accurate, contextually relevant information based on Cosine Similarity, rather than generating misleading responses.

What You'll Learn

  • How Embeddings and Cosine Similarity prevent AI Hallucination, improve classification, and ensure accurate, contextually relevant responses.
  • Why pre-trained models like Text-Embedding-Ada-002 outperform custom models, and how to deploy them in Azure AI Foundry with hands-on coding in .NET/C#.
  • Best practices for managing Embedding Vectors and Semantic Similarity in GenAI-Driven Applications for scalability and precision.

Who Should Attend

  • .NET/C# Developers building AI-powered apps and solutions.
  • Engineers working on LLM/GenAI-based Agents, AI search, or automation.
  • Architects designing scalable AI solutions using Semantic and Vector-Based Models, and professionals aiming to enhance AI precision and scalability

Don't miss this chance to level up your AI Skills and make your agents smarter, faster, and more reliable using Vector Embeddings and Semantic Similarity!

#GenerativeAI #AIEmbedding #AzureAI #DotNetAI #SemanticSearch

Người phát biểu

Sự kiện liên quan

Các sự kiện dưới đây cũng có thể được bạn quan tâm. Hãy chắc chắn ghé thăm Trang chủ lò phản ứng để xem tất cả các sự kiện có sẵn.

Các phần của trang này có thể được dịch bằng máy hoặc AI.