跳至主要内容

学习、联系、构建

Microsoft Reactor

加入 Microsoft Reactor 并实时与开发人员互动

准备好开始使用 AI 和最新技术了吗? Microsoft Reactor 提供活动、培训和社区资源,帮助开发人员、企业家和初创公司利用 AI 技术等。 快加入我们吧!

学习、联系、构建

Microsoft Reactor

加入 Microsoft Reactor 并实时与开发人员互动

准备好开始使用 AI 和最新技术了吗? Microsoft Reactor 提供活动、培训和社区资源,帮助开发人员、企业家和初创公司利用 AI 技术等。 快加入我们吧!

返回

Explainable AI (XAI) Course: Local Explanations - Concept and Methods

13 三月, 2023 | 5:00 下午 - 6:30 下午 (UTC) 协调世界时

  • 形式:
  • alt##Livestream直播

主题: 数据科学和机器学习

语言: 希伯来语

The XAI course provides a comprehensive overview of explainable AI, covering both theory and practice, and exploring various use cases for explainability. Participants will learn not only how to generate explanations, but also how to evaluate and effectively communicate these explanations to diverse stakeholders.

The XAI course is managed on a voluntary basis by DataNights and Microsoft organizers and free for charge for the participant. This course is designed for data scientists that have at least two years in industry of hands-on experience with machine learning and Python and a basic background in deep learning. Some of the sessions will be held in-person at the Microsoft Reactor in Tel Aviv, while others will be conducted virtually.

Course Leaders:
Bitya Neuhof, DataNights
Yasmin Bokobza, Microsoft

What is this session about?
Machine learning models can be analyzed at a high level using global explanations, such as linear model coefficients. However, there are several limitations to these global explanations. In this talk, I will review the use cases where local explanations are needed and introduce two popular methods for generating local explanations: LIME and SHAP. Our learning will be focused on SHAP, its theory, model-agnostic and model-specific versions, and how to use and read SHAP visualizations.

主讲人

本页面的部分内容可能是机器翻译或人工智能翻译.