跳至主要内容

发现、联系、增长

Microsoft Reactor

加入 Microsoft Reactor 并实时与初创公司和开发人员互动

是否准备好开始使用 AI?  Microsoft Reactor 提供活动、培训和社区资源,以帮助初创公司、企业家和开发人员利用 AI 技术打造新业务。 快加入我们吧!

发现、联系、增长

Microsoft Reactor

加入 Microsoft Reactor 并实时与初创公司和开发人员互动

是否准备好开始使用 AI?  Microsoft Reactor 提供活动、培训和社区资源,以帮助初创公司、企业家和开发人员利用 AI 技术打造新业务。 快加入我们吧!

返回

Explainable AI (XAI) Course: Local Explanations - Concept and Methods

13 三月, 2023 | 5:00 下午 - 6:30 下午 (UTC) 协调世界时

  • 形式:
  • alt##Livestream直播

主题: 数据科学和机器学习

语言: 希伯来语

The XAI course provides a comprehensive overview of explainable AI, covering both theory and practice, and exploring various use cases for explainability. Participants will learn not only how to generate explanations, but also how to evaluate and effectively communicate these explanations to diverse stakeholders.

The XAI course is managed on a voluntary basis by DataNights and Microsoft organizers and free for charge for the participant. This course is designed for data scientists that have at least two years in industry of hands-on experience with machine learning and Python and a basic background in deep learning. Some of the sessions will be held in-person at the Microsoft Reactor in Tel Aviv, while others will be conducted virtually.

Course Leaders:
Bitya Neuhof, DataNights
Yasmin Bokobza, Microsoft

What is this session about?
Machine learning models can be analyzed at a high level using global explanations, such as linear model coefficients. However, there are several limitations to these global explanations. In this talk, I will review the use cases where local explanations are needed and introduce two popular methods for generating local explanations: LIME and SHAP. Our learning will be focused on SHAP, its theory, model-agnostic and model-specific versions, and how to use and read SHAP visualizations.

主讲人

如有疑问,请联系我们 reactor@microsoft.com