跳至主要内容

学习、联系、构建

Microsoft Reactor

加入 Microsoft Reactor 并实时与开发人员互动

准备好开始使用 AI 和最新技术了吗? Microsoft Reactor 提供活动、培训和社区资源,帮助开发人员、企业家和初创公司利用 AI 技术等。 快加入我们吧!

学习、联系、构建

Microsoft Reactor

加入 Microsoft Reactor 并实时与开发人员互动

准备好开始使用 AI 和最新技术了吗? Microsoft Reactor 提供活动、培训和社区资源,帮助开发人员、企业家和初创公司利用 AI 技术等。 快加入我们吧!

返回

How to expose ML model errors, data bias & interpretability with responsible AI

13 七月, 2023 | 4:30 下午 - 5:30 下午 (UTC) 协调世界时

  • 形式:
  • alt##Livestream直播

主题: 数据科学和机器学习

语言: 英语

The astonishing growth in AI innovations are transforming our lives and society. Companies are adopting AI in their business process and products to gain a competitive advancement. The rapid advancements are seen across many industries such as finance, healthcare, education, manufacturing, etc. As society expectation for AI are evolving, there's increasing scrutiny on what harms AI systems can cause with no transparency or accountability enforced. As a result, there’s growing government compliance regulations on AI in some industries. On the other hand, data scientists, AI developers and decision-makers face the challenge of finding the right tools to enable them to analyze machine learning models for fairness, safety & reliability, explainability and accountability. In this session, we will explore the Azure Machine Learning's Responsible AI dashboard tool that enables data scientists and companies to analyze and debug AI systems to be less harmful to society, more trustworthy and meet compliance requirements.

  • AI
  • Machine Learning

主讲人

相关活动

你也可能对以下活动感兴趣。 请务必访问我们的 Reactor 主页 查看所有可用活动。

本页面的部分内容可能是机器翻译或人工智能翻译.