跳至主要内容

发现、联系、增长

Microsoft Reactor

加入 Microsoft Reactor 并实时与初创公司和开发人员互动

是否准备好开始使用 AI?  Microsoft Reactor 提供活动、培训和社区资源,以帮助初创公司、企业家和开发人员利用 AI 技术打造新业务。 快加入我们吧!

发现、联系、增长

Microsoft Reactor

加入 Microsoft Reactor 并实时与初创公司和开发人员互动

是否准备好开始使用 AI?  Microsoft Reactor 提供活动、培训和社区资源,以帮助初创公司、企业家和开发人员利用 AI 技术打造新业务。 快加入我们吧!

返回

How to expose ML model errors, data bias & interpretability with responsible AI

13 七月, 2023 | 4:30 下午 - 5:30 下午 (UTC) 协调世界时

  • 形式:
  • alt##Livestream直播

主题: 数据科学和机器学习

语言: 英语

The astonishing growth in AI innovations are transforming our lives and society. Companies are adopting AI in their business process and products to gain a competitive advancement. The rapid advancements are seen across many industries such as finance, healthcare, education, manufacturing, etc. As society expectation for AI are evolving, there's increasing scrutiny on what harms AI systems can cause with no transparency or accountability enforced. As a result, there’s growing government compliance regulations on AI in some industries. On the other hand, data scientists, AI developers and decision-makers face the challenge of finding the right tools to enable them to analyze machine learning models for fairness, safety & reliability, explainability and accountability. In this session, we will explore the Azure Machine Learning's Responsible AI dashboard tool that enables data scientists and companies to analyze and debug AI systems to be less harmful to society, more trustworthy and meet compliance requirements.

  • AI
  • Machine Learning

主讲人

如有疑问,请联系我们 reactor@microsoft.com