Skip to main content

LEARN, CONNECT, BUILD

Microsoft Reactor

Join Microsoft Reactor and engage with developers, entrepreneurs, and startups live

Ready to get started with AI and the latest technologies? Microsoft Reactor provides events, training, and community resources to help developers, entrepreneurs and startups build on AI technology and more. Join us!

LEARN, CONNECT, BUILD

Microsoft Reactor

Join Microsoft Reactor and engage with developers, entrepreneurs, and startups live

Ready to get started with AI and the latest technologies? Microsoft Reactor provides events, training, and community resources to help developers, entrepreneurs and startups build on AI technology and more. Join us!

Go back

Paradoxes in Data Science

1 December, 2021 | 5:30 PM - 6:30 PM (UTC) Coordinated Universal Time

  • Format:
  • alt##LivestreamLivestream

Topic: Data Science & Machine Learning

Language: English

What is this session about?
In this talk, Pier Paolo Ippolito will walk you through some of the main paradoxes associated with Data Science and how they can be identified. The session will aim to first define what paradoxes are and then provide some examples of when they might occur when solving Data Science tasks.

Who is it aimed at?
Data Scientists, Machine Learning Engineers, Statisticians, Software Engineers.
Why should people attend?
As part of this session, we will be highlighting some of the most common paradoxes associated with Data Science and its statistical foundations

Any Prerequisites?
Statistics, Programming, Mathematics

Speaker Name:
Pier Paolo Ippolito
Pier Paolo Ippolito is a Data Scientist at SAS and MSc in Artificial Intelligence graduate with an interest in research areas such as Data Analytics, Machine Learning, and Cloud Development. Aside from his work activities, he is a freelancer and technical writer for Towards Data Science. LinkedIn: https://www.linkedin.com/in/pierpaolo28/
Web Contacts: https://linktr.ee/pierpaolo28

Learn Module
https://docs.microsoft.com/en-us/learn/paths/understand-machine-learning/

For questions please contact us at reactor@microsoft.com