Lewati ke konten utama

PELAJARI, SAMBUNGKAN, BANGUN

Microsoft Reactor

Bergabung dengan Microsoft Reactor dan terlibat dengan pengembang secara langsung

Siap untuk mulai menggunakan AI dan teknologi terbaru? Microsoft Reactor menyediakan acara, pelatihan, dan sumber daya komunitas untuk membantu pengembang, pengusaha, dan startup dibangun berdasarkan teknologi AI dan banyak lagi. Gabung dengan kami!

PELAJARI, SAMBUNGKAN, BANGUN

Microsoft Reactor

Bergabung dengan Microsoft Reactor dan terlibat dengan pengembang secara langsung

Siap untuk mulai menggunakan AI dan teknologi terbaru? Microsoft Reactor menyediakan acara, pelatihan, dan sumber daya komunitas untuk membantu pengembang, pengusaha, dan startup dibangun berdasarkan teknologi AI dan banyak lagi. Gabung dengan kami!

Kembali

Explainable AI (XAI) Course: Local Explanations - Concept and Methods

13 Maret, 2023 | 5.00 PM - 6.30 PM (UTC) Waktu Universal Terkoordinasi

  • Format:
  • alt##LivestreamStreaming Langsung

Topik: Ilmu Data &Pembelajaran Mesin

Bahasa: Ibrani

The XAI course provides a comprehensive overview of explainable AI, covering both theory and practice, and exploring various use cases for explainability. Participants will learn not only how to generate explanations, but also how to evaluate and effectively communicate these explanations to diverse stakeholders.

The XAI course is managed on a voluntary basis by DataNights and Microsoft organizers and free for charge for the participant. This course is designed for data scientists that have at least two years in industry of hands-on experience with machine learning and Python and a basic background in deep learning. Some of the sessions will be held in-person at the Microsoft Reactor in Tel Aviv, while others will be conducted virtually.

Course Leaders:
Bitya Neuhof, DataNights
Yasmin Bokobza, Microsoft

What is this session about?
Machine learning models can be analyzed at a high level using global explanations, such as linear model coefficients. However, there are several limitations to these global explanations. In this talk, I will review the use cases where local explanations are needed and introduce two popular methods for generating local explanations: LIME and SHAP. Our learning will be focused on SHAP, its theory, model-agnostic and model-specific versions, and how to use and read SHAP visualizations.

Pembicara

Bagian dari halaman ini mungkin diterjemahkan oleh mesin atau AI.