Matt Gotteiner
Microsoft
學習、聯繫、建置
準備好開始使用 AI 和最新技術嗎? Microsoft Reactor 提供活動、訓練和社群資源,協助開發人員、企業家和初創公司建置 AI 技術等等。 加入我們!
學習、聯繫、建置
準備好開始使用 AI 和最新技術嗎? Microsoft Reactor 提供活動、訓練和社群資源,協助開發人員、企業家和初創公司建置 AI 技術等等。 加入我們!
11 9月, 2024 | 8:00 下午 - 9:00 下午 (UTC) 國際標準時間
主題: 智慧型應用程式
語言: 英文
If you're trying to get an LLM to accurately answer questions about your own documents, you need RAG: Retrieval Augmented Generation. With a RAG approach, the app first searches a knowledge base for relevant matches to a user's query, then sends the results to the LLM along with the original question. What if you have documents that should only be accessed by a subset of your users, like a group or a single user? Then you need data access controls to ensure that document visibility is respected during the RAG flow. In this session, we'll show an approach using Azure AI Search with data access controls to only search the documents that can be seen by the logged in user. We'll also demonstrate a feature for user-uploaded documents that uses data access controls along with Azure Data Lake Storage Gen2.
Presented by Matt Gotteiner, Product Manager for Azure AI Search, and Pamela Fox, Developer Advocate for Python
** Part of RAGHack, a free global hackathon to develop RAG applications. Join at https://aka.ms/raghack **
Read the official rules and join the hack at https://aka.ms/raghack. No Purchase Necessary. Must be 18+ to enter. Contest ends 9/16/24.
Want more hands-on RAG training? Visit the Reactor series home page to see all the RAGHack 2024 sessions!
演講者
此活動屬於 RAGHack 2024 Series.
按一下這裡以 造訪系列頁面 您可以在其中查看所有即將推出和隨選活動。