주요 콘텐츠로 건너뛰기

LEARN, CONNECT, BUILD

Microsoft Reactor

Microsoft Reactor에 가입하고 개발자와 라이브 참여

AI 및 최신 기술을 시작할 준비가 되셨나요? Microsoft Reactor는 개발자, 기업가 및 신생 기업이 AI 기술 등을 기반으로 구축하는 데 도움이 되는 이벤트, 교육 및 커뮤니티 리소스를 제공합니다. 참여하세요.

LEARN, CONNECT, BUILD

Microsoft Reactor

Microsoft Reactor에 가입하고 개발자와 라이브 참여

AI 및 최신 기술을 시작할 준비가 되셨나요? Microsoft Reactor는 개발자, 기업가 및 신생 기업이 AI 기술 등을 기반으로 구축하는 데 도움이 되는 이벤트, 교육 및 커뮤니티 리소스를 제공합니다. 참여하세요.

돌아가기

Mastering Semantic Classification with Embeddings and Vector Similarity in .NET/C#

3 4월, 2025 | 3:00 오후 - 3:45 오후 (UTC) 협정 세계시

  • 서식:
  • alt##LivestreamLivestream

항목: 에이전트

언어: 영어

GenAI Agents often hallucinate, generating misleading responses when they lack accurate grounding. The solution? Embedding-Based Classification with Vector Similarity - ensuring agents first classify queries correctly before retrieving trusted data.

Join this live session to learn how embedding models like Text-Embedding-Ada-002 leverage Semantic Similarity and Cosine Similarity to improve AI precision, reduce errors, and scale effortlessly in .NET/C# applications.

Why This Matters

  • Without proper classification, GenAI Agents can hallucinate, pulling in irrelevant or incorrect data and making unreliable predictions.
  • Vector-Based Embeddings solve this by capturing the Semantic Meaning of queries and mapping them to the right categories.
  • Ensures agents retrieve accurate, contextually relevant information based on Cosine Similarity, rather than generating misleading responses.

What You'll Learn

  • How Embeddings and Cosine Similarity prevent AI Hallucination, improve classification, and ensure accurate, contextually relevant responses.
  • Why pre-trained models like Text-Embedding-Ada-002 outperform custom models, and how to deploy them in Azure AI Foundry with hands-on coding in .NET/C#.
  • Best practices for managing Embedding Vectors and Semantic Similarity in GenAI-Driven Applications for scalability and precision.

Who Should Attend

  • .NET/C# Developers building AI-powered apps and solutions.
  • Engineers working on LLM/GenAI-based Agents, AI search, or automation.
  • Architects designing scalable AI solutions using Semantic and Vector-Based Models, and professionals aiming to enhance AI precision and scalability

Don't miss this chance to level up your AI Skills and make your agents smarter, faster, and more reliable using Vector Embeddings and Semantic Similarity!

#GenerativeAI #AIEmbedding #AzureAI #DotNetAI #SemanticSearch

스피커

관련 이벤트

아래 이벤트는 사용자에게도 관심이 있을 수 있습니다. 반드시 방문하세요. Reactor 홈페이지 사용 가능한 모든 이벤트를 확인합니다.

이 페이지의 일부는 기계 또는 AI 번역될 수 있습니다.